Valor actual neto (VAN): qué significa y pasos para calcular - Banconomía

TOPS 10

lunes, 21 de febrero de 2022

Valor actual neto (VAN): qué significa y pasos para calcular



¿Qué es el Valor Presente Neto (VPN)?

El valor presente neto (VAN) es la diferencia entre el valor presente de las entradas de efectivo y el valor presente de los flujos de efectivo durante un período de tiempo. El VAN se utiliza en el presupuesto de capital y la planificación de inversiones para analizar la rentabilidad de las inversiones o proyectos proyectados. NPV es el resultado de un cálculo utilizado para encontrar el valor actual de un flujo de pago futuro.

  • El valor actual neto (NPV) se utiliza para calcular el valor actual de los flujos de pago futuros de una empresa, proyecto o inversión.
  • Para calcular el VPN, debe estimar el momento y la cantidad de los flujos de efectivo futuros y elegir una tasa de descuento igual a la tasa de rendimiento aceptable más baja.
  • La tasa de descuento puede reflejar su costo de capital o los rendimientos disponibles en inversiones alternativas de riesgo comparable.
  • Si un proyecto o inversión tiene un VAN positivo, significa que su tasa de retorno será mayor que la tasa de descuento.

Fórmula del valor actual neto (NPV)

Si un proyecto tiene un flujo de efectivo para pagar dentro de un año, entonces el VAN del proyecto se calcula de la siguiente manera:

nortefósforocinco=Flujo de efectivo(1+Una generación)Toneladainversión inicialDónde:Una generación=Solicitar una devolución o descuentoTonelada=número de períodos de tiempo begin{alineado} NPV = frac{texto{flujo de caja}}{(1 + i)^t} – texto{inversión inicial} textobf{donde:} i=texto{rendimiento requerido o tasa de descuento} t=texto {número de tiempo de segmentos} fin{alineación}

VPN=(1+i)tFlujo de caja−inversión inicial Donde: i=Rendimiento requerido o tasa de descuentot=Número de períodos de tiempo

Si analiza un proyecto a largo plazo con múltiples flujos de efectivo, la fórmula NPV para el proyecto es la siguiente:

nortefósforocinco=Tonelada=0norteRTonelada(1+Una generación)ToneladaDónde:RTonelada=netcashinflow-outflows durante un solo períodoToneladaUna generación=Posible tasa de descuento o retorno de inversión alternativaTonelada=número de períodos de tiempo begin{alineado} NPV = sum_{t = 0}^n frac{R_t}{(1 + i)^t} textbf{donde:} R_t=text{Flujo neto de entrada y salida de efectivo durante un período}ti=text{ Descuento tasa o rendimiento disponible en inversiones alternativas} t=texto{número de períodos de tiempo} fin{alineación}

​NPV=t=0∑n​(1+i)tRt​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ​​​​​​Donde: Rt=salida neta de efectivo – salida en un período ti=tasa de descuento o rendimiento, se puede obtener una inversión alternativa t=número de períodos de tiempo​

Si no está familiarizado con la notación de suma, aquí hay una manera más fácil de recordar el concepto de VPN:

nortefósforocinco=Valor actual del flujo de caja esperadoInvertir valor en efectivo hoy NPV = texto{valor del flujo de efectivo esperado hoy} – texto{valor del efectivo invertido hoy}

VAN = valor actual de los flujos de efectivo esperados – valor actual del efectivo invertido

Lo que el VAN puede decirle

NPV describe el valor del dinero en el tiempo y se puede utilizar para comparar la tasa de rendimiento de diferentes proyectos, o para comparar la tasa de rendimiento proyectada con la tasa de rendimiento mínima requerida para aprobar una inversión. 1 La fórmula NPV para el valor del dinero en el tiempo a la tasa de descuento, que puede ser la tasa crítica para proyectos basados ​​en el costo de capital de la empresa. Independientemente de cómo se determine la tasa de descuento, un VAN negativo indica que la tasa de rendimiento esperada no la alcanzará, lo que significa que el proyecto no creará valor.

En el contexto de la evaluación de valores corporativos, el cálculo del VAN a menudo se denomina análisis de flujo de caja descontado (DCF). Este es el método que utiliza Warren Buffett para comparar el VAN del DCF futuro de una empresa con su precio actual. 2

La tasa de descuento está en el corazón de la fórmula. Explica el hecho de que un dólar hoy vale más que un dólar en el futuro, siempre que las tasas de interés sean positivas. La inflación erosiona el valor de una moneda con el tiempo. Mientras tanto, el dólar hoy se puede invertir en activos seguros como los bonos del gobierno;Las inversiones más riesgosas que los bonos del Tesoro deben ofrecer tasas de rendimiento más altas. Independientemente de cómo se determine, la tasa de descuento solo es valiosa como una tasa de rendimiento de referencia que un proyecto debe superar.

Por ejemplo, un inversionista puede obtener $100 hoy o dentro de un año. La mayoría de los inversores son reacios a posponer recibir $ 100 hoy. Pero, ¿qué pasaría si un inversionista pudiera optar por recibir $100 hoy o $105 un año después?Una tasa de rendimiento del 5% puede valer la pena si inversiones comparables de igual riesgo ofrecen rendimientos más bajos durante el mismo período.

Por otro lado, si un inversionista puede ganar un 8% libre de riesgo durante el próximo año, una oferta de $105 a un año no sería suficiente. En este caso, el 8% sería la tasa de descuento.

VAN positivo y VAN negativo

Un VAN positivo significa que el beneficio esperado del proyecto o inversión (descontado a su valor presente) excede el costo esperado, también en dólares de hoy. Se supone que una inversión con un VAN positivo será rentable.

Una inversión con un VAN negativo resultará en una pérdida neta. Este concepto es la base de la regla del valor presente neto, que establece que solo se deben considerar las inversiones con un VAN positivo.

El VPN se puede calcular usando una tabla, una hoja de cálculo (como Excel) o una calculadora financiera.

Cómo calcular el VAN usando Excel

En Excel, hay una función NPV que se puede usar para calcular fácilmente el valor presente neto de una serie de flujos de efectivo. La función NPV en Excel es simplemente NPV, y los requisitos completos de la fórmula son:

= VAN (tasa de descuento, flujo de caja futuro) + inversión inicial

En el ejemplo anterior, la fórmula ingresada en la celda gris NPV es:

=NPV (celdas verdes, celdas amarillas) + celdas azules

=VAN(C3,C6:C10)+C5

Ejemplo de cálculo del valor actual neto

Imagine una empresa que puede invertir $ 1 millón en equipos y espera generar $ 25,000 en ingresos mensuales durante 5 años. Alternativamente, la empresa podría invertir el dinero en valores con un rendimiento anual esperado del 8%. La gerencia ve el equipo y los valores como riesgos de inversión comparables.

Hay dos pasos clave para el VAN de una inversión en equipos informáticos:

Paso 1: VAN de la Inversión Inicial

Debido a que el equipo es prepago, este es el primer flujo de caja incluido en el cálculo. No es necesario calcular el tiempo transcurrido, por lo que no es necesario descontar un gasto inmediato de $1 millón.

Paso 2: VAN de los flujos de caja futuros

  • Determine el número de ciclos (t):Se espera que el dispositivo genere un flujo de caja mensual durante cinco años, lo que significa que después de multiplicar la cantidad de años de flujo de caja por la cantidad de meses en un año, se incluirán 60 ciclos en el cálculo.
  • Determinación de la tasa de descuento (i):Se espera que las inversiones alternativas rindan un 8% anual. Sin embargo, dado que el equipo genera flujos de efectivo mensuales, la tasa de descuento anual debe convertirse a una tasa compuesta periódica o mensual. Usando la fórmula a continuación, encontramos una tasa compuesta mensual cíclica de 0.64%.

tasa de ciclo=((1+0.08)112)1=0.64% Texto{Tasa de período} = (( 1 + 0,08)^{frac{1}{12}}) – 1 = 0,64 %

TasaPeriódica=((1+0.08)121​)−1=0.64%

Suponga que el flujo de efectivo mensual se gana al final del mes y que el primer pago llega exactamente un mes después de comprar el dispositivo. Este es un pago futuro y, por lo tanto, debe ajustarse por el valor del dinero en el tiempo. Los inversores pueden realizar fácilmente este cálculo utilizando una hoja de cálculo o una calculadora. Para ilustrar el concepto, los primeros cinco pagos se muestran en la siguiente tabla.

El cálculo completo del valor presente es igual al valor presente de los 60 flujos de efectivo futuros menos la inversión de $1 millón. Si se esperaba que el dispositivo tuviera algún valor al final de su vida útil, los cálculos podrían ser más complicados, pero en este ejemplo se supone que no tiene ningún valor.

nortefósforocinco=ps1,000,000+Tonelada=16025,00060(1+0.0064)60 VPN = -$1,000,000 + sum_{t = 1}^{60} fracción{25,000_{60}}{(1 + 0.0064)^{60}}

VAN=−$1,000,000+∑t=160​(1+0.0064)6025,00060​​​

La fórmula se puede simplificar al siguiente cálculo:

nortefósforocinco=ps1,000,000+ps1,242,322.82=ps242,322.82 VPN = -$1,000,000 + $1,242,322.82 = $242,322.82

VPN=−$1,000,000+$1,242,322.82=$242,322.82

En este caso, el VPN es positivo;Se debe comprar equipo. Si el valor actual de estos flujos de caja es negativo porque la tasa de descuento es alta o los flujos de caja netos son pequeños, entonces la inversión no tiene sentido.

límite de valor actual neto

Una limitación importante del análisis del VPN es que hace suposiciones sobre eventos futuros que pueden resultar incorrectas. El valor de la tasa de descuento utilizado es un juicio, mientras que el costo de inversión y su rendimiento esperado son necesariamente estimaciones. Los cálculos del VPN son tan confiables como sus suposiciones subyacentes.

Los resultados en dólares producidos por la fórmula NPV, si bien son fáciles de interpretar, pueden no contar toda la historia. Considere las siguientes dos opciones de inversión: Opción A con un VAN de $100,000 u Opción B con un VAN de $1,000.

fórmula del valor actual neto

ventaja

  • Considere el valor del dinero en el tiempo

  • Usar el costo de capital de la empresa para incorporar flujos de efectivo descontados

  • Devuelve un valor en dólares relativamente fácil de interpretar

  • Puede ser fácil de calcular cuando se usa una hoja de cálculo o una calculadora financiera

defecto

  • Gran dependencia de insumos, estimaciones y pronósticos a largo plazo

  • Independientemente del tamaño del proyecto o el retorno de la inversión (ROI)

  • Puede ser difícil de calcular manualmente, especialmente para proyectos con varios años de flujo de efectivo

  • Impulsado por insumos cuantitativos sin tener en cuenta las métricas no financieras

Valor actual neto y período de recuperación

Una simple llamada de teléfono, ¿verdad?¿Qué pasa si la opción A requiere una inversión inicial de $1 millón y la opción B solo cuesta $10?Los números extremos en el ejemplo ilustran un punto. La fórmula NPV no evalúa el retorno de la inversión (ROI) de un proyecto, que es una consideración clave para cualquier persona con capital limitado. Si bien la fórmula NPV estima cuánto valor generará un proyecto, no le dice si es un uso eficiente de su capital de inversión.

El período de recuperación o el método de recuperación es una alternativa más simple al VPN. El método de retorno de la inversión calcula el tiempo que lleva recuperar su inversión. Una desventaja de este enfoque es que no tiene en cuenta el valor del dinero en el tiempo. Por esta razón, es más probable que los períodos de recuperación calculados para inversiones a largo plazo sean inexactos.

Además, el cálculo del período de recuperación no se ocupa de lo que sucede después de que se recupera nominalmente el costo de la inversión. El retorno de la inversión puede variar significativamente con el tiempo. La comparación que utiliza periodos de recuperación supone lo contrario.

VAN y Tasa Interna de Retorno (TIR)

La Tasa Interna de Retorno (TIR) ​​se calcula resolviendo la fórmula NPV para la tasa de descuento requerida para que el NPV sea igual a cero. Este método se puede utilizar para comparar proyectos de diferentes horizontes de tiempo en función de su tasa de rendimiento proyectada.

Por ejemplo, la TIR se puede utilizar para comparar la rentabilidad esperada de un proyecto de tres años con un proyecto de diez años. Si bien la tasa interna de rendimiento es útil para comparar rendimientos, puede ocultar el hecho de que la tasa de rendimiento de un proyecto de tres años solo es válida durante tres años y puede no coincidir una vez que se reinvierte el capital.

¿Qué significa Valor Actual Neto (VPN)?

El valor actual neto (NPV) es una métrica financiera diseñada para capturar el valor total de una oportunidad de inversión. La idea detrás del NPV es pronosticar todas las entradas y salidas de efectivo futuras asociadas con una inversión, descontar todos esos flujos de efectivo futuros al presente y sumarlos. La suma de todos los flujos de efectivo positivos y negativos es el VAN de la inversión. Un VPN positivo significa que, después de tener en cuenta el valor del dinero en el tiempo, ganarás dinero si sigues invirtiendo.

¿Cuál es la diferencia entre el VAN y la Tasa Interna de Retorno (TIR)?

El VAN y la Tasa Interna de Retorno (TIR) ​​son conceptos estrechamente relacionados porque la TIR de una inversión es la tasa de descuento que da como resultado que el VAN de esa inversión sea cero. Otra forma de pensarlo es que el VAN y la TIR intentan responder dos preguntas separadas pero relacionadas. Para el VPN, la pregunta es: «Dado el valor del dinero en el tiempo, ¿cuál es la cantidad total que ganaré si sigo haciendo esta inversión?»Para la tasa interna de rendimiento, la pregunta es: «Si sigo adelante con esta inversión, ¿cuál será la tasa de rendimiento anual equivalente?»

¿Qué es un buen VPN?

En teoría, si el VAN es mayor que cero, es «bueno». Después de todo, el cálculo del VPN ya tiene en cuenta el costo de capital del inversor, el costo de oportunidad, la tolerancia al riesgo y otros factores a través de la tasa de descuento. Y también se capturan los flujos de efectivo futuros del proyecto, junto con el valor del dinero en el tiempo. Entonces, incluso un VPN de $ 1 debería ser teóricamente «bueno», lo que indica que el proyecto vale la pena. En la práctica, muchos planificadores establecen un estándar más alto para el VAN para tener un margen adicional de seguridad porque las estimaciones utilizadas en los cálculos pueden ser erróneas.

¿Por qué descontar los flujos de caja futuros?

NPV utiliza flujos de efectivo descontados para calcular el valor del dinero en el tiempo. Mientras las tasas de interés sean positivas, un dólar hoy vale más que un dólar mañana, porque un dólar hoy gana un día extra de interés. Incluso si los rendimientos futuros pueden predecirse con certeza, deben descontarse porque debe pasar un período de tiempo antes de que puedan realizarse, durante el cual cantidades comparables pueden generar intereses.

No hay comentarios:

Publicar un comentario